
 

 

  
Abstract—In this paper the mathematical modeling for Go game 

is by using Finite State Machine. The purpose in Go gaming is 
territorial control, and it is a hard challenge for computer sciences, 
since it conceals a huge combinatorial complexity that impacts the 
options for learning automation.  In this paper, we show how the use 
of pattern recognition by neural networks (NNs) is quite efficient 
during the first and middle stage in a Go match, while Monte Carlo 
Tree Search (MTCS) during the match ending stage. The 
experimental results on the use of NNs and MCTS illustrate our 
claim, and precede the analytical comparison of major approaches 
based on NNs for Go automation. 
 

Keywords—Go Gaming, Tactics Pattern Recognition, Strategies 
Building, and Neural Network learning.  

I. INTRODUCTION 
HE formal analysis of the board game called “Go” is at the 
core of advances in computer science in the same way the 

analysis of Chess was during the 20th century [1]. Go is a top 
complex board game and currently, the deployment of learning 
algorithms for Go gaming automation is a central challenge for 
computational intelligence to demonstrate sufficient skill to 
beat the top human Go masters. The Go game official board 
(goban) is a 19 × 19 grid for two players using black-stones 
versus white-stones with zero-sum, deterministic, and perfect 
information [2]. By turn, each player places one black/white 
stone on one empty intersection or point of the board. Black 
plays first and white receives a compensation komi, by playing 
the second turn [3]. The goal of Go gaming is to control as 
much of the board area as possible, by means of complex 
strategies, applied through simple Go rules. Fig. 1 presents the 
flow diagram for Go gaming. 
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Fig. 1 Go gaming flow diagram 

 
To determine the available moves during an automated Go 

match is a tough problem because of the huge search space to 
assess. The complexity of computer Go gaming is measured by 
the game tree size and the state space is quite descriptive. The 
game tree is the cardinality of the set of all possible manners 
for a legal sequence of moves, through all Go matches. A Go 
gaming state (node) is a particular board arrangement, i.e., the 
positions of the stones on the board at a specific moment in a 
match. The size of the Go game tree is around 10360: 10172 
for the state space and up to 361 legal moves [4]. Therefore, 
the search space on Go gaming solutions is huger –very much– 
than that for Chess [2]. The moves of a Go match are depicted 
graphically by a decision tree that records the moves and is an 
element of the game tree. The root state is the match 
beginning. Any node children are those positions reachable in 
one move. 

In this paper, we quantify the efficiency of pattern 
recognition by neural networks (NNs) during an automated Go 
match. The best pattern recognition of tactics and strategies for 
Go gaming is achieved during the first and middle steps of a 
match, as we concluded based on experimental results. In these 
steps, the a-priori-knowledge-based moves are very efficient 
for Go gaming. In a broader computer science perspective, the 
correct solution of Go gaming automation may enlighten 
solutions in diverse fields, such as complex network analysis, 
fractal formation, and bioinformatics. A mathematical 
modeling of the game of Go using Finite State Machine (FSM) 
is presented.  On a broad perspective the formal modeling of 
games is relevant on engineering for computer process 
simulation [5], or in economy for price-based coordination on 
hierarchical systems [6], among a lot of other fields. 
Complementary, concepts form engineering like the many 
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valued quantum computation is applied for modeling the 
games’ dynamics [7]; or concepts of economy like the 
modeling of the gross-domestic product is taken as an ordinary 
differential game of pursuit, or as a hereditary game [8]. The 
entire relationship on this issue is beyond the scope of the 
present paper, but given its relevance, it is outlined briefly in 
the Discussion section.  

A. Go Gaming 
On the Go board, the liberty of a stone is any vertical or 

horizontal unfilled point adjacent to the stone, which 
sometimes can be shared with other stones. Once a stone is 
placed on the board it can be removed only when it is 
captured, which happens if it is surrounded by adversarial 
stones and thus, losing all its liberties. Black stones capture 
white stones and vice versa. Two or more stones of the same 
color joined by horizontal or vertical points form a chain stone 
that cannot be divided; diagonally adjacent stones are not in a 
chain. From now on, the term stone refers to both single stones 
and chains, but explicit differentiation is made when required. 
Any stone is alive if it cannot be captured, and it is dead if it 
cannot avoid capture. When a player places a stone that will 
result in immediate capture, this is called suicide, which is not 
allowed. The game ends when both players pass on their turn. 
Then, the score is computed based on both territory occupied 
by the player on the board and the number of captured 
adversarial stones. The winner is whoever has the largest total.  

The basic tactics of Go of eyes, ladders and nets are used to 
dominate a local area [9] (see Fig. 2). An eye is a single empty 
point enclosed by stones of the same color, which cannot be 
occupied by an adversary’s stone owing to the suicide rule. 
Two eyes inside a stone make its capture very difficult. A 
stone having only one liberty is in Atari. A ladder results from 
a sequence of moves that forces an adversary’s stone into atari. 
A net is a set of stones (not always a chain) that surrounds an 
adversary’s stone such that it could eventually be captured 
[10]. All these a-priori-known patterns of Go basic tactics 
should be recognized for a fair Go game, and are used for 
training the NN in learning their recognition.  

 

 
 

Fig. 2 Go basic tactics: (a) eyes, unavailable points – A is black and 
B is white; (b) Ω stones are surrounded by a net and may soon be 
captured; (c) Ω stones are in atari by ladders 

 
For broad territory control, Go strategies follow a set of 

planned actions, deployed partly by using the aforementioned 
tactics as elements. Basic strategies are invasion, reduction, 
connection, and capture [9] (see Fig. 3). An invasion strategy 
places a stone near friendly stones, in an area where the 

adversary’s stones look likely to dominate. A reduction 
strategy places a stone near friendly stones, to connect them if 
needed, in an area likely to be occupied eventually by the 
adversary. Capture reduces the liberties of an adversary’s 
stone to zero and removes it from the board. 

 

  
 
Fig. 3 Go basic strategies: (a) Ω stones perform invasion in territory 
dominated by white; (b) Ω black/white stones perform reduction in 
territory of white/black dominance; (c) black/white playing in 
positions A/B capture white/back stones; (d) black/white playing in 
positions A/B perform connections with friendly stone 

 
A Go gaming strategy move, from the root node to the 

leaves nodes, is aiming to win a match efficiently. Despite the 
disarming simplicity of the Go rules, Go gaming conceals a 
huge combinatorial complexity [4, 11] (see Table I) and 
therefore, the big complexity is to set up an efficient strategy 
for playing Go. The state space complexity is the number of 
all the possible arrangements of the game board, which in a 19 
× 19 board is about 319×19 ≈ 10172.24 for Go, whereas it is 1050 
for Chess and 1018 for checkers. The branching factor for Go 
ranges from 200–300 possible moves at each player’s turn; for 
Chess, the range is 35–40 moves. The game tree size is the 
total number of different matches that can be played and for 
Go that is ≈ 10360 (chess ≈ 10123 and checkers ≈ 1054). Even on 
the 9 × 9 board size, the state space and the game tree size is 
astronomically large [12]. 

Table  I.  COMPLEXITY OF GO, CHESS, AND CHECKERS GAMES 

Game Board size State space Game tree size 
Go 19 × 19 10172 10360 

chess 8 × 8 1050 10123 
Checkers 8 × 8 1018 1054 

B. State of the Art 
The gaming level of ongoing Go automated player is not 

great successful versus top human Go masters yet [13], 
contrasting with the achieved by chess automated players. Best 
Go gaming automation can beat middle level human Go 
players nowadays [14, 15]. However, the deployment of 
efficient Go gaming automation is being strengthened. To 
advance this effort, we quantify the performance of automated 
pattern recognition for Go basic tactics, such as eye and 
ladder, and based on the tactics recognition, we perform smart 
reasoning on Go basic strategies, such as reduction and 
invasion, both at the early and middle stages of a Go match.  

The relevant advances by the Monte Carlo Tree Search 
(MCTS), applied to overcome the huge complexity of Go 
gaming, should be complemented in order to achieve victory 
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over top level Go masters. Methods focused on simulation-
based search algorithms [14, 16, 17] behave very randomly in 
the early stages of a Go match and produce high search 
complexity in choosing the next Go moves, because of the 
huge set of free board positions at this step. In contrast, using 
pattern recognition and a-priori-known movements, sets the 
basis for efficient Go strategies/tactics gaming. The Go game 
is based on long-term influence moves [14]. Moves made in 
the beginning of the match affect the outcome of later moves 
and thus, this highlights the relevance on making the correct 
decisions early in the Go match. MCTS is particularly free 
from expert knowledge and from tactical-solving guidance 
[18], and the memory of previous games’ moves is based on a 
huge number of simulations [14, 16] that is very costly in time 
during the early stages of a match. Furthermore, in specific 
situations, it prevents the identification of any correct move 
because of the lack of a tactical search; it needs too many 
simulations per move to achieve an appropriate gaming move 
[18, 19]. Hence, an a-priori-knowledge-based method for 
movement selection is appropriate at this step [20]. 

One very difficult task for Go automation is the evaluation 
of non-final positions for estimating the potential of occupied 
territory [3, 21, 22]. Prospective methods for programming Go 
gaming are being deployed in simulation-based search 
algorithms, heuristic searches, machine learning, and 
automated knowledge-based decision making [23]. The main 
challenge in Go gaming automation is to deal with the huge 
number of forms in the board, which must be classified prior to 
deciding on the next correct Go move. Thus, the automation of 
Go strategies is hugely complex. The process of tactics pattern 
recognition is essential in learning how to make a Go move 
[24]. For our quantitative analysis we use:  

• A neural network for Go tactics pattern recognition and 
basic strategy construction. 

• A MCTS for move automation in the end stages of a Go 
match. 

 
The rest of this paper is organized as follows. Section II 

describes the mathematical modeling of the game of Go. 
Section III reviews the use of Neural Network and MCTS for 
the game of Go. Section IV presents pattern recognition for Go 
tactics and strategies. Section V provides the analysis of the 
techniques by stage and Neural Network Go players. Section 
VI is the Discussion, followed by the conclusions in Section 
VII. 

II. MATHEMATICAL FORMAL MODELING FOR THE GAME OF 
GO  

A. Mathematical definition 
The mathematical definitions of the Go game concepts 

follow. 
• Board:T = {(x, y)| 1 ≤ x, y ≤ n}, n = 19 is the official size.  
• Let π ∈ T, ∀π, ρ(π) ∈ {e, b, w}, ρ(π) be the event in a 

board point; initially all ρ(π) = e  an empty point in T, and 

b, w denotes black, white, ⋀ = {b, w}. 
• Ps = {π |π ∈ T, ρ(π) ∈ ⋀} ≠ ∅, is the set of occupied 

board points. 
• Mh(π0, π1) = |π0.x – π1.x | + |π0.y – π1.y| is the Manhattan 

distance between π0, π1 ∈ T.   
• Stone: st = (π0, π1 … πn), n ∈ ℕ, ρ(π0) = … = ρ(πn), and 

Mh(πi, πi+1) = 1. A single stone is by n = 1, otherwise it is 
a chain stone. 

• Set of stones: St = {st ⊆ Ps | st is a stone.  
• Set of liberties for st ∈ St, L(st) = {π ∈ T | ρ(π) ∈ T - Ps} 

and ∃π0 in st  with Mh(π, π0) = 1}. 
• atari: st ∈ St  is in atari if and only if (iff) |L(st)| = 1. 
• eye: |⋂ i = 1 to n L(sti)| = 1, n = 2, 3, 4.                                 
• ladder: ld ∈ St  is a ladder on st iff st is the other color to 

ld and is in atari by ld. 
• net: nt ∈ St is a net on st  iff ∀b ∈ L(st), ∃stx in nt and π 

in stx such that Mh(b, π) = 1 that is, any liberty of st is 
adjacent to a stone of the adversary.  

• P = {p1, p2}, p1 and p2 the black and white player. 
• A = {ɑ1, ɑ2 … ɑm} is the set of actions.  
• φ: S × A → S is the transition function (relation). 
• S is the state space. 
 
The FSM for Go gaming algorithms follow, using the 

previous mathematical definitions.  

A. Finite state machine 
In Game Theory, the formal modeling of gaming accounts 

for the interaction between the players’ actions by obeying the 
game rules. Match gaming is algorithmically implemented 
according to the interaction of the strategies Ei each player 
applies in attempting to achieve maximum gain. We give a 
formal definition of strategy that will be used later to define 
basic tactics and some basic strategies.  

Let ê = ɑ1ɑ2 … ɑn be a strategy, so ê is a sequence of 
planned actions. 

• Ei = {e1, e2 … en} the set of strategies. 
• E  = Ep₁ × Ep₂ is the strategy space. 
• ti= {t1, t2 … to} ⊆ Ei the set of tactics. 

A FSM for Go strategies formal handling is defined as 
follows (see Fig. 4): 

 
                     FE = (Â, Ŝ, s, φ, H)                               (1) 

 
Â ⊆ A is a set of symbols that denote basic actions, Ŝ = {s, s0 

… sl, h} is the set of states, φ: Ŝ × Â → Ŝ, is the transition 
function. H = {h} is the set of final states, s ∈ Ŝ is the initial 
state. 
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Fig. 4 FSM for handling the player’ strategies from basic actions ɑix 

 
This FSM computes any strategy passing by the middle state 

until the halt one h; the FSM is deterministic and thus, given a 
state and an action, there exists only one transition ɑx

i to the 
next state and each action ɑx

i is different in the strategy ex
i = 

ɑ1
iɑ2

i … ɑp
i. A tactic t⃗ ∈ ti is defined by t⃗ = (ɑx), see Fig. 5.  

 

 
Fig. 5 FSM modeling the player’s tactic ɑi 

 
See Fig. 6 for the FSM for modeling eyes. Stones holding 

eye conditions and halting at h0, h1 and h2 are edge, lateral, and 
central eyes, respectively. Here, Ŝ = {s, s0, s1, s2, h0, h1, h2}d H 
= {h0, h1, h2}. 

 

 
Fig. 6 FSM for eyes creation 
 

Considering the FSM for ladders, let Ŝ = {s, s0 … sz, h} and 
H = {h} be states. Any string of symbols halting at h and 
forcing an adversary’s stone in atari results in a ladder (see Fig 
7):  

 

 
Fig. 7 FSM for ladder creation 

 
Regarding the FSM for nets, any string of symbols halting at 

h and surrounding the adversary’s stones results in a net (see 
Fig 8): 

 

 
Fig. 8 FSM for net creation 
 

From the current state of a Go match, the human player’s 
next move should result from recognizing the Go tactics and 
strategies deployed by the adversary thus far in a global 
assessment of the match. Locally, the next node in the each 
player’s match-game decision tree should result after an 
empirical visual analysis of the Go match pattern at this 
moment.  

III. ARTIFICIAL NEURAL NETWORK AND MONTE CARLO TREE 
SEARCH 

The ability of NNs to find hidden relationships among the 
input-output mapping of pattern data makes them sufficiently 
powerful to deal with huge amount of combinations of forms, 
such as the ones emerging in Go gaming automation. 
Complementarily, the MCTS working on convenient search 
space is truly efficient for the automation of a match end step.  

A. Neural Networks 
The classic back-propagation NN for training on pattern 

recognition uses supervised learning to adjust the connection 
weights and enable the recognition of complex patterns. The 
topology of a multilayer NN is shown in Fig. 9. We use NNs 
for Go tactics pattern recognition as the basis for deciding the 
next Go actions, based on the given patterns of atari and 
capture conditions and on the analysis of the current state of a 
match. 

 

 
 

Fig. 9 example of multi-layer NN topology 
 
For Go gaming on small boards, symbiotic adaptive neuro-

evolution uses neural networks combined with evolutionary 
algorithms to determine the good/bad moves for a win/loss 
[21]. The automated Go player Honte [25] uses NNs in 
conjunction with supervised temporal differences (TD) for 
learning local shapes, and additional NNs for performing 
estimates of the value of the territorial potential. In [26], an 
automated Go player based on a back-propagation NN 
presents an architecture for learning a model from training 
data.  

TD learning using simulation-based searches has been 
applied to reinforcement learning for Go gaming automation in 
two phases: learning and planning [15]. During the learning 
step, the player improves the defined policy as follows. Each 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 296



 

 

node (state) value is updated from both the MCTS simulations 
and the value function approximation and bootstrapping from 
the current node to the match end; the mean outcome of 
simulated episodes from real Go matches is used to value each 
node in a search tree and between related nodes. A TD search 
has been applied on Go matches over 9 × 9 boards by using 
naive binary features matching simple patterns of stones. 
Complementarily, during the planning step, the policy is 
improved by performing iterative simulations that start at each 
node [27]. A major drawback, however, is that MCTS for Go 
gaming automation needs too many simulations per move to 
obtain good results. Therefore, to overcome the lack of 
efficiency, the TD search integrates Go a-priori-knowledge to 
decide the next moves. 

A Go machine learning approach has been developed that 
focuses on an evaluation function regarding scalability, from 
the library of local tactical patterns, the integration of patterns 
across the board, and the size of the board itself [28]. The 
automated learning is on local patterns from a library of 
games, by means of a recursive probabilistic Bayesian NN, the 
outputs of which represent local territory ownership 
probabilities. A combination of NNs, particle swarm 
optimization, and evolutionary algorithms has been used to 
train a board evaluator from zero knowledge [29]; the hybrid 
algorithm provides an evaluation of the game board through 
self-play. The authors claim that after experiments against the 
benchmark game of Capture Go, the hybrid algorithm includes 
and overcomes the power from the parts. 

B. Monte Carlo Tree Search 
Monte Carlo methods are rooted in statistical physics for the 

modeling of stochastic phenomena [17]. In Go gaming 
automation, MCTS is a best-first search technique, using 
stochastic simulations to estimate the value of the moves (see 
Fig. 10) and thus, adjust the policy towards a best-first strategy 
[17]. MCTS simulation values the nodes in a search tree that is 
the partial game tree being progressively built. The building of 
a tree is performed by following the selection, expansion, 
simulation, and back-propagation mechanisms [19]. 

 

 
Fig. 10 MCTS process can be divided into selection, expansion, 
simulation, and back-propagation 

 
The well-known Olga and Oleg Go player automation is a 

pioneer on the application of the Monte Carlo approach [30]. 

To evaluate a move from a current state s, many self-play 
simulations are performed and the value of a is the average 
value from the outcome of the simulations using a uniform 
random policy. Progressive pruning and the all-moves-as-first 
heuristic allows more rapid gaming without decreasing the Go 
player level. The Rapid Action Value Estimation (RAVE) 
extension from the MCTS algorithm [16] shares the value of 
actions across each sub-tree of the tree search, and the 
heuristic MCTS uses a function to initialize the value of the 
new positions in the tree search. 

IV. TACTICS AND STRATEGIES 
In order to create a robust and reliable network, sometimes, 

random noise is added to training data [9]. Don´t care symbols 
are replaced by 2s, 1s or 0s in each training stage in order to 
preserve conditions to be a true training set for eyes, ladders, 
and nets, respectively. The NN error is obtained from the 
difference between the output from the training data and the 
target during iterative steps. The error is fed back repeatedly to 
the previous layers to modify the connections weight of nodes 
until a predefined tolerance or number of epochs is achieved. 
The NN activation of the nodes is by the sigmoid function. 
The number of neurons in the hidden layer is obtained 
experimentally and the output layer indicates the recognized 
patterns. 

A. Tactics Pattern Recognition 
For the process of pattern recognition analysis, the Go board 

is segmented into a window view size of 3 × 3 in order to 
identify eyes patterns. A window view size of 5 × 5 is used for 
identifying ladders and nets patterns, and as a result of the 
neighboring combination of these windows, bigger ladders and 
nets can be recognized. The NN layer of the input receives a 
set of board occupied points; 9 for eyes and 25 for a ladder or 
a net. During the training stage, the training patterns include 
don´t care symbols to represent those points that can be 
replaced regardless of their value. It is valuable to include 
don’t care patterns in Go tactics recognition because of the 
non-deterministic nature of Go gaming, see example in [31]. 

To start the process of Go tactics pattern recognition, the 
positions from the 3 × 3 and 5 × 5 windows view size are 
encoded into a vector that feeds the network. When using 
pattern recognition to identify Go tactics in a match, the main 
difficulty concerns verifying that a shape really corresponds to 
an eye, ladder or net. The NN should check the conditions to 
authenticate whether the detected shape is a true Go tactic. 

For eye pattern recognition, the NN tries to find similarities 
with the given input to any of the shapes: edge, lateral or 
normal eyes. If high similarities exist then the conditions of 
eye must be checked, i.e., there must be an empty point of 
space surrounded by friendly stones such that no adversary’s 
stone may be set upon it. These conditions are verified outside 
the NN using verifier conditions. As in the case of eye 
patterns, the same procedure is applied for ladder and net 
pattern recognition, but with the proper ladder and net 
conditions. 
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B. Building of Strategies from Pattern Recognition 
Once the Go tactics patterns such as eyes, ladders or nets, 

are recognized, as well as the Go gaming strategies of 
invasion, reduction, connection or capture, offensive/defensive 
strategies can be employed (see Fig. 11). Hence, based on the 
tactics pattern recognition, deployment heuristics for suitable 
defensive/offensive Go a-priori-knowledge strategies are 
available to be applied during the initial and middle steps of an 
automated Go match. Strategies of reduction and invasion as 
well as defensive strategies, address saving stones in atari or 
are devoted to augment the liberties of ally stones. Strategies 
can be constructed following the next statements, as illustrated 
in Fig. 12. 

Defensive strategies: 
• Save a stone in atari by close placement of an ally stone 

that eventually connects and saves it, or increasing 
liberties. 

• For preventing a stone falling within risk of be captured 
by the adversary’s next moves. 

Offensive strategies: 
• Interrupt the formation of adversary’s eye by placing a 

new stone. 
• Reduce liberties to adversary’s stones, eventually placing 

it in atari. 
• Play close to own stones, sets of stone(s) or close to 

stone(s) with two or more eyes to ensure high possibilities 
of making connections and spreading of stones. 

• Capture adversary’s stones by placing adversary’s stones 
in or close to atari. 

 

 
Fig. 11 example pattern recognition of a possible eye 
 

 
Fig. 12 Go gaming strategies: (a) Ω is in atari, but playing in point A 
makes a connection for saving Ω; (b) playing in points A reduces Ω 
liberties; (c) white/black playing to points A/B increases dominance 
area; (d) white/black playing to points A/B interrupts the formation 
of adversary’s eye 

 

V. TIMELY PATTERN RECOGNITION 

A. Analysis of Neural Network and Monte Carlos Tree 
Search by stage 
The huge amount of forms that occur in a Go gaming match 

makes the tactics patterns recognition a difficult task. Even 
though the recognized patterns correspond to tactics that are 
significant for the proposed Go strategic analysis, approach 
[32] tries to determine Go patterns in game records like edge 
and corner patterns, but few of them represent proper Go 
tactics patterns.  

Fig. 13 shows that the highest number of recognized 
patterns occurs in the match middle stage. In the early and 
middle stage, based on the Go gaming a-priori-knowledge of 
these states, the pattern recognition and strategic reasoning 
work, thus a better strategic analysis of offensive/defensive Go 
actions is available. But when we lack of information or the 
board free positions arises too restrictive, that correspond to 
typical circumstance in late stage, the usage of MCTS on the 
set of free positions do choice the best to play in. Numbers in x 
axis represent Go match turns for both players. 
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Fig. 13 number of patterns recognized through stages in a Go match 

 
The Fig. 14 shows the elapsed time per move per player 

throughout the stages of a Go match. Time required per move 
using pattern recognition is too low and almost constant during 
the first and middle stage, but strongly increases in the late 
stage since the difficulty to recognize any pattern on the board 
in this stage. On the opposite, using MCTS, time spent for 
doing a move is too high in the early stage, comes down in the 
middle stage and is truly short in the late stage. Reason is that 
the size of search space the algorithm works at the early stage 
is huge, so applying MCTS is expensive and waste a lot of 
time; in the late stage of a Go match the search space size is  
small so quick to apply MCTS. 
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Fig.14 elapsed time per move throughout stages of a Go match 
 
The Fig. 15 shows the percentage observed of random 

moves in 100 simulations. In the late stage MCTS movements 
are suitable since each position is quick to evaluate, so the best 
one up to the method is selected. In the early and middle stages 
MCTS is time spending, but not random pattern recognition 
supporting a-priori-known strategic Go movements are ease to 
apply. 
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Fig. 15 elapsed time per move throughout stages of a Go match 

 
During the early and middle stages of Go match automation, 

the use of pattern recognition to identify the adversary’s 
sequence of movements is pretty efficient. By pattern 
recognition, the identification of the tactics and strategies 
followed by the adversary over these automated match stages 
can be achieved efficiently. From the players’ experience to 
decide the next move, using a pattern recognition expression 
of a-priori-knowledge for local movement decision making is 
available. Moreover, pattern recognition serves as the basis to 
deploy a match gaming strategic global answer. Next, the 
pattern recognition for tactics and strategies is deployed. 

During the latter stages of a Go match, an MCTS-based 
move becomes a suitable option. This is because the size of the 
search space has become small and the automated pattern 
recognition is too difficult to perform over the complex 
patterns on the board with the few free board positions. 
Actually, in the latter stages of a Go match, the deployment of 
a-priori-known strategies is hard because the free board points 
are too restrictive, and few board spaces make it difficult to 

deploy strategies. Under this circumstance, the gaming method 
is to perform an MCTS evaluation to play any of the free 
board positions. Hybrid approaches with Go a-priori-
knowledge-based strategies are easy to deploy in the initial and 
middle stages of the game when few board points are 
occupied. By the end stages, the use of MCTS is better suited 
to choosing a move on the empty board positions.  

B. Neural Network Go players 
Our gaming simulator compromises a set of automated Go 

players, using either random, or pattern recognition, or 
strategic reasoning, or MC-Rave methods. In addition, it has a 
graphic interface and uses Go Text Protocol for 
communication with other automated players in KGS [33] or 
CGOS [34] Go servers (see Fig. 16).  

 

GTP 
communication

CGOS

KGS

Any automated player
(GNUGo, …)

Go Game 
Simulator

Go Engine:
random, pattern 

recognition, strategic 
reasoning, MC-Rave 

methods.

Graphic
interface
(developed)

Set of automated
players

 
Fig. 16 Components of Go gaming simulator 
 

In [21], the NN output positive value indicates a good 
move, the larger the value, the better the move. In [25], one 
NN previously trained from a database of Go expert players’ 
matches, tries to imitate local Go shapes; another NN 
estimates safely stones and a third NN tries to find potential 
unoccupied territory. In [28], an NN integrates local 
information across the board in all directions and produces 
outputs that represent ownership probabilities for identifying 
local territory to be occupied. In [29], an NN is used as the 
evaluation function of the leaf nodes in a game tree, with zero 
expertise involved. In contrast to our approach, the use of an 
NN is for pattern recognition of Go tactics. For this, an NN is 
trained with a set of Don’t care patterns. Once the NN is 
trained, the board game is segmented into windows view size 
of 3 × 3 and 5 × 5. Each windows view is encoded into a 
vector that serves as input to the NN, and the NN tries to find 
similarities with Go tactics, such as eyes, ladders and nets. 
Based on this recognition, a set of Go gaming actions is 
proposed. Table II summaries some aspects of the approaches 
based on NNs. 

Table  II.  COMPARISON OF THE USE OF NNS FOR PLAYING GO 

Approaches Purpose How is 
trained Accuracy 

N. Richard et 
al. 1998 [21] 

To define the 
next move - - 

F. Dahl 2001 Detect local 400 games - 
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[25] shape, 
territorial and 

safe group 

records 

L. Wu et al. 
2008 [28] 

Identify local 
territory 

ownership 
probabilities 

From a 
dataset 

played by 
human 

- 

X. Cai et al. 
2010 [29] 

Use to 
approximate 

the board 
evaluation 
function 

Records of 
amateur 
games 

- 

Own 
approach 

Tactics 
patterns 

recognition to 
use on 

offensive / 
defensive. 

Using a set 
of don´t 

care 
patterns of 

eyes, 
ladders and 
nets forms 

Above 70 
% 

 
A comparative review of the NN-based approaches for 

automated Go players is shown in Table III. The use of NNs 
for pattern recognition is essential in our proposal.  

 

Table  III.  ANALYTICAL COMPARISON AMONG DIFFERENT APPROACHES 

Go game 
proposal / 
Features 

Our 
approach 

N. 
Richard 

et al. 
1998 
[21] 

F. Dahl 
2001 
[25] 

L. 
Wu 
et 
al. 
200

8 
[28] 

X. 
Cai 
et 
al. 
201

0 
[29] 

Plays in 
small board 

size 
     

Plays in 
medium 

board size 
     

Plays in large 
board size     - 

Board 
Segmentation 

3 × 3; 5 
× 5 Size  x 

3 
× 3 
Size 

 

Multi-Players 
including 4 2  - - 

FSM and 
formal 

languages 
Modeling 

     

Diversity 
strategies and 

tactics 
including 

     

Visual tactics 
recognition   

Detects 
good or 

bad 
shapes 

  

Visual 
strategies 

recognition 
     

 
Efficiency [35] is the correct way to use the available 

resources for doing a task, measured by runtime. In our case, 
this is the time taken for training the net and simulating an 
entire match game; a reduced runtime implies more efficiency.  

Efficacy [35] is the ability to achieve the desired goals or 
the realization of the activities to reach the goals. In our case, 
this is measured by the number of frequent similar patterns 
obtained. See Table IV for a comparison of efficiency and 
efficacy of the various NN Go automation approaches. 

Table  IV.  EFFICACY AND EFFICIENCY REPORTED ON THE DIFFERENT 
APPROACHES 

Issue / 
Feature 

Our 
approa

ch 

N. 
Richar
d et al. 
1998 
[21] 

F. 
Da
hl 

200
1 

[25] 

L. 
Wu et 

al. 
2008 
[28] 

X. Cai et 
al. 2010 

[29] 

Efficie
ncy 

NN 
 

19 × 19 
board 
size, 
each 
net 

training 
spends 
≈ 10 

second
s 

9 × 9 
board 
size, 

training 
spends 
5 days, 

and 
“the 

training 
times 

increas
e with 

BS 
quite 

rapidly
”  

- 

For 
trainin
g a 9 
× 9 

board 
size is 
O(N4) 
and 
for 

future 
19 × 
19 

could 
take 

month
s 

- 

Effica
cy 

NN 
 

Net 
accurac

y is 
above 
70%. 

- - 

“NN 
can 

learn 
territo

ry 
predic
tions 
fairly 
well”  

- 

   
SANE [21] plays Go on a small board, cannot perform 

pattern recognition and needs 100 to 1000 simulations to 
achieve a 75% win rate over an adversary. Other approaches 
that use NNs, but do not present statistical results of accuracy 
are given in [25, 28, 35]. 

The results show that the strategic reasoning based on 
pattern recognition during the early and middle stages is 
appropriate because it allows the deployment of the 
strategically suitable moves through the deployment of 
previously known effective Go tactics and strategies. However, 
as the performance of this method reduces, MCTS is able to 
replace it and select moves based on the remaining free 
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positions on the board. In the latter stages of a Go match, the 
switch to MCTS becomes an efficient option, because the size 
of the search space has become small and automated pattern 
recognition is too difficult to perform with the complex 
patterns on the board and the few remaining free board 
positions. Actually, in the late Go match stage, the deployment 
of a-priori-known strategies is difficult because the free board 
positions are too restrictive; few board spaces make it difficult 
to deploy strategies. Under this circumstance, the gaming 
method is by performing an MCTS evaluation to play any of 
the remaining free board positions. Therefore, in the early and 
middle match stages when few board points are occupied the 
Go a-priori-knowledge-based strategies are easy to deploy. At 
the end of a Go match, the use of MCTS is better for 
determining a move based on the empty board positions. 

VI. DISCUSSION 
Analysis on Go gaming automation from the complex 

network approach, like the one of the World Wide Web, 
focuses on the non-trivial topology of the network that results 
from a Go match [36]; the construction of a directed network 
given a suitable definition of related tactical Go gaming 
moves. By mining database matches of master level games, 
this approach discovered the similar patterns arising during the 
early stages of a Go match. In [37], the proposal for two 
dynamic randomization techniques is given: one for the 
parameters and the other for a hierarchical move generator. 

The similarity between fractal formation and Go gaming 
patterns, is the diversity of the complex forms involved. 
However, a fractal formation follows a predetermined and 
regular pattern, but no previous regular pattern is followed by 
playing Go. Actually, the eyes, ladder and nets patterns are all 
obtained by ongoing strategies pertinent to each Go match.  

Complex pattern recognition is present in Bioinformatics, 
which is devoted to computer and information analysis and the 
management of data on biological processes [38-40], 
particularly in determining or classifying molecular or tissue 
patterns as equivalent or related to some extent. Pattern 
recognition for Go gaming and Bioinformatics processes may 
advance in parallel from now on.  

In computer complexity theory [41], the problems pertain to 
specific complexity classes by regarding certain 
characteristics: one major is time, which refers to the number 
of execution steps that an algorithm used to solve a problem; 
the other main complexity character is space, which refers to 
the amount of memory used to deal with a problem. Some 
complexity classes are P, NP, PSPACE, and EXPTIME. As 
a result of some complexity analyses of Go gaming, experts of 
the area claim that Go gaming belongs to EXPTIME-
complete game [42], because it is an unbounded two-player 
game. Unbounded games are those in which there is no 
restriction on the number of moves that can be made. 
However, Go seems to be a bounded game because in each 
move a stone is placed, but there exist capturing moves that 
reopen spaces on the board. Papadimitriou [43], in one of his 

analyses, concluded that Go is a PSPACE-complete game.  
Actually, being aware of what the adversary is doing helps 

to formulate defensive actions that inhibit her offensive 
actions. The inspired thinking that humans are capable of, as a 
result of observing the decisions other people make, applies in 
Go gaming through performing pattern recognition to decide 
on the next offensive/defensive move. The proposed NNs 
recognize forms that are Go tactics patterns and therefore, give 
relevant information to strategic decision making during the 
early and middle stages of a Go match.  

The algorithmic analysis of Go game is paradigmatic in 
computer science nowadays. Moreover, the use of Artificial 
Neural Networks and heuristics Monte Carlo Tree Search for 
implementing Go tactics and strategies is a relevant 
contribution from computer science to some engineering and 
social sciences. The control of territory as the central problem 
in Go automation is direct or implicit present in a lot of 
problems in real life. As an instance, control on epidemic 
diseases may be efficiently treated using tactics of Go game.  

VII. CONCLUSION 
Formal modeling of Go tactics and strategies is by using 

Finite State Machines. Pattern recognition based on NN is 
effective during the early and middle steps of a Go match; the 
expert’s a-priori-knowledge for recognizing Go eyes, ladders 
and nets is efficiently translated by means of NN for Go 
gaming automation. Actually, pattern recognition techniques 
are offered to build up and apply tactics and strategies during 
the first and middle steps of a Go match, either in defensive or 
offensive movements. Complementary, the huge difficulty to 
perform a-priori-knowledge-based strategies during the latter 
stage of a Go match, is convenient surpass by means of the use 
of MCTS. Go gaming, formation of diverse complex networks, 
as well as growing of fractals, may suggest there are 
underneath common problem, and solutions, in all of these 
topics. 
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